
Eur. Phys. J. B 24, 149–153 (2001) THE EUROPEAN
PHYSICAL JOURNAL B
c©

EDP Sciences
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Abstract. Spin-polarized tunneling in FMS/M/FMS double tunnel junctions where FMSs are ferromag-
netic semiconductor layers and M is a metal spacer is studied theoretically within the single-site coherent
potential approximation (CPA). The exchange interaction between a conduction electron and localized
moment of the magnetic ion is treated in the framework of the s-f model. The spin polarization in the
FMS layers is observed to oscillates as a function of the number of atomic planes in the spacer layer.
Amplitude of these oscillations decreases with increasing the exchange interaction in FMS layers.

PACS. 72.25.-b Spin polarized transport – 75.50.Pp Magnetic semiconductors – 75.70.Ak Magnetic
properties of monolayers and thin films

1 Introduction

There is much recent interest in the spin-polarized trans-
port in multilayers of ferromagnets and paramagnets.
These include the giant magnetoresistance, spin-injection
experiments, and spin-polarized tunneling experiments
which have application potential in digital storage and
magnetic sensor technologies [1,2]. The spin-polarized
tunneling phenomenon, showed that spin is conserved in
the tunneling process and the electrons coming from a
ferromagnet are spin-polarized [3]. In the last decade,
with the progress in the research on magnetic multilay-
ers, spin-polarized tunneling through magnetic semicon-
ductor (MS) layers has received increasing attention [4–6].
In tunneling experiments, when a FMS is used as a tun-
nel barrier, the conduction band splits into up spin and
down spin subbands and the barrier height for these two
subbands is changed. Because of this exchange splitting,
the probability of tunneling for up spin electrons increases
but for down spin it decreases. Using MSs tunnel barriers
such as EuS or EuSe, one can obtain nearly 99% spin-
polarized tunneling electrons even with nonmagnetic elec-
trodes [7,8].

The purpose of this paper is to study the spin polariza-
tion of the tunneling density of states in FMS double bar-
rier junctions, and show that it oscillates with the spacer
thickness. The single-site CPA for the s-f model in com-
pletely ferromagnetic case is used in the calculations [9].
In order to determine the oscillations, we estimate the dif-
ference in tunneling spin polarization between the FMS
single barrier and double barriers.
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Fig. 1. Schematic of the double junction. The atomic layers
with n = 1 and n = N are the FMS layers. Here d denotes the
spacer thickness.

Although the CPA and the corresponding Alloy Anal-
ogy are not the best starting points for treating the spin-
polarization of conduction electrons, we believe that the
technique outlined in this article can qualitatively recover
the expected behavior for the spin polarization as a func-
tion of the exchange coupling, the doping, and the spacer
thickness.

2 Model and formalism

We consider a trilayer consisting of two FMS monolay-
ers separated by a nonmagnetic spacer. The trilayer is
sandwiched between two semi-infinite ideal lead wires as
shown in Figure 1. We assume that the interfaces between
the FMS layers and the spacer are sharp. Both the trilayer
and lead wires described by a single-orbital tight-binding
Hamiltonian with nearest-neighbor hopping t on a sim-
ple cubic lattice with lattice constant a. We choose the
(001) axis of the simple cubic structure to be normal to
the layers and this direction is called z-direction hereafter.
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We use the s-f (or s-d) model which is commonly con-
sidered as realistic for local-moment semiconductors and
metals. In this model the following Hamiltonian is used to
describe the present system:

H = Hs +Hf +Hsf , (1)

Hs = −t
∑

rn,r′n′,σ

c†r,n,σcr′,n′,σ, (2)

Hf = −
∑

r,r′,n

Jrn,r′nSr,n · Sr′,n, (3)

Hsf = −I
∑

r,n,σ,σ′

(σ · Sr,n)σσ′c†r,n,σcr,n,σ′ , (4)

where r and n denote the position in x-y plane and the
layer index in the z-direction, respectively. Here Hs is
the transfer energy of an s-electron with spin σ(=↑, ↓)
between nearest-neighbor sites. Each lattice point of the
FMS layers is occupied by a localized magnetic moment,
represented by a spin operator Sr,n. Hf describes the
Heisenberg-type exchange interaction between these local-
ized moments where Jrn,r′n is an exchange integral. Hsf

is the s-f exchange interaction between the s-electron and
the f -spin Sr,n where σ is the Pauli matrix for the con-
duction electron spin, and I is the s-f exchange coupling
constant. In Hsf and Hf , n(= 1, N) is the position of the
FMS layers in the z-direction. It is assumed that the lo-
calized moments of the magnetic ions in two FMS layers
to be the same magnetic moment. The metal spacer is
consisting of N − 2 atomic layers which describes by Hs.

In ordinary magnetic semiconductors, the magnetic ex-
citation energy may be smaller by two to three orders
of magnitude than other typical energies, as the Bloch
bandwidth W or the s-f exchange interaction energy IS;
thus, the f -spin is treated as a static system. On the
other hand, due to the Mermin-Wagner theorem [10,11],
an effectively two-dimensional spin-isotropic system can-
not display long-range magnetic order at finite tempera-
tures, T > 0 K [12]. This is one important reason why
anisotropies play a fundamental role for the understand-
ing of thermodynamic phase transitions in thin films. This
restriction however, does not suppress the main physical
aspects at T = 0 K. The spin splitting in density of states
of tunneling electrons is the main origin of the electron-
spin polarization, and is independent of the FMS layers
thickness [13]. Thus we do not inspect how the spin sys-
tem is affected by the reduced translational symmetry.

The CPA [14] was originally thought as an approxi-
mate theoretical treatment of statistically disordered sys-
tems, e.g., binary alloys, but it can easily be generalized to
a random spin system if we ignore correlated motion of lo-
calized spins [15]. In this investigation we use the CPA for
the s-f model in a single-site t-matrix formula, according
to reference [9].

When an s-electron is propagating in the FMS layers
it will subject to different effective potentials through the
s-f exchange interaction according to the orientation of
its spin. In order to treat the exchange scattering of the
s-electron within the framework of the single-site CPA, we

consider a single f -spin located at site r in an effective lay-
ered medium where an s-electron is subjected to a complex
potential (or coherent potential) which is site diagonal and
takes the value Σ↑ or Σ↓, according to the spin orienta-
tion of the s-electron [6]. Therein, an s-electron moving
in this effective medium can be described by the effective
Hamiltonian K in the Bloch-Wannier representation as

K =
∑
k‖,σ

∑
n,m

[(Σnσ + εk‖)δn,m − t(δm,n+1 + δm,n−1)]

× c†k‖,n,σck‖,m,σ, (5)

where Σnσ is the layer- and spin-dependent coherent po-
tential which is only non-zero in the FMS layers. Here,
k‖(kx, ky) is a wave vector parallel to the layers.

As in references [6,9], we apply the condition that the
average scattering of the s-electron by the single f -spin in
the medium is zero. Thus we define the single-site t-matrix
of the s-f exchange interaction as

tr,n = vr,n(1− Ḡvr,n)−1 , (6)

where Ḡ is the effective Green’s function defined by

Ḡ(Z) =
1

Z −K · (7)

Here tr,n is the complete scattering associated with the
isolated potential vr,n in the nth effective layer (n = 1
and N), which is expressed as

vr,n =
∑
σ,σ′

[−I(σ · Sr,n)σσ′ −Σnσδσσ′ ]c†r,n,σcr,n,σ′ . (8)

Within the single-site CPA, the condition

〈tr,n〉av = 0, (9)

for any r in the FMS layers, leads to the equations for
Σn↑(= Σ↑ in Ref. [9]) and Σn↓(= Σ↓ in Ref. [9]). Here the
bracket 〈· · ·〉av means the thermal average.

In the completely ferromagnetic case (i.e. T = 0 K)
the orientations of the f -spins are perfectly arranged in
one direction (z-direction). In this case the coherent po-
tentials for two spin-polarized subbands are expressed in
the following simple forms [9]:

Σn↑ = −IS , (10)

Σn↓ = IS
(1 + IFn↑)
(1− IFn↑)

, (11)

with

Fnσ(Z) =
1
N‖

∑
k‖

Ḡnnσ(k‖;Z). (12)

Here, Ḡnnσ is the Green’s function of the nth layer, N‖ is
the number of lattice sites in each layer and Z = E + iδ,
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where δ is a small positive number. Using the equa-
tions (5, 7), the Dyson equation in the Bloch-Wannier
representation can be written as

Ḡnmσ = G0
nmσ +G0

n1σΣ1σḠ1mσ +G0
nNσΣNσḠNmσ,

(13)

where

Ḡ1mσ=
G0

1mσ(1−G0
11σΣNσ) +G0

1NσΣNσG
0
Nmσ

(1−G0
11σΣ1σ)(1−G0

11σΣNσ)−[G0
1Nσ]2Σ1σΣNσ

,

(14)

ḠNmσ=
G0
Nmσ(1−G0

11σΣ1σ) +G0
N1σΣ1σG

0
1mσ

(1−G0
11σΣ1σ)(1−G0

11σΣNσ)−[G0
1Nσ]2Σ1σΣNσ

,

(15)

and the unperturbed Green’s function is given by

G0
nmσ(k‖;Z) =

1

2t
√
η2 − 1

[η −
√
η2 − 1]|n−m|. (16)

Here,

η = (Z − εk‖)/2t, (17)

εk‖ = −2t(coskxa+ cos kya). (18)

In equations (13–15), we have suppressed the variables
k‖ and Z for simplicity. We have solved these equations
numerically for Σnσ. From equation (12) we can calculate
the local density of states (LDOS) per atomic site for spin
σ electron in the effective layer n as

Dnσ(E) = − 1
π

Im Fnσ(E + iδ), (19)

which should satisfy the following equation in all of the
present numerical calculations∫ +∞

−∞
Dnσ(E)dE = 1.0. (20)

In order to study the tunneling spin polarization,
we assume that N↑/N↓ is equal to Dn↑(E)/Dn↓(E),
where N↑(N↓) is the number of electrons with up
(down) spin after tunneling to the FMS conduction band,
Dn↑(E)(Dn↓(E)) is the LDOS with up (down) spin at
the nth layer, and E is a typical energy of the tunnel-
ing electrons. Thus the magnitude of the spin polarization
for tunneling density of states in each layer can be given
by [6,16]

Pn =
Dn↑(EF)−Dn↓(EF)
Dn↑(EF) +Dn↓(EF)

, (21)

where EF is the Fermi energy, because it is expected that
only electrons near the Fermi level participate in tunneling
process.

We are mainly interested in the difference be-
tween the electron-spin polarization in FMS/M/FMS and
M/FMS/M junctions. Hence, in the present results an ef-
fective polarization is used in place of Pn which is de-
fined as

Peff = Pdouble − Psingle, (22)

where Psingle and Pdouble are the layer dependence of spin
polarization (Pn) in M/FMS/M and FMS/M/FMS junc-
tions respectively. In fact we are interested in studying
that part of the electron-spin polarization which is due to
the existence of the second FMS barrier (at n = N); thus,
it is convenient to cancel the contribution of M/FMS/M
junction to the spin polarization. In this way it is reason-
able to discuss the effective polarization. Note that in the
M/FMS/M structure the FMS layer is at n = 1.

3 Numerical results

In the numerical calculations the energy is measured in
units of t and the small imaginary part of the energy is
chosen δ = 0.02 to simplify the calculations. The numer-
ical results for the spin polarization in FMS layers as a
function of the spacer layer thickness d = (N − 2)a are
shown in Figure 2 for two cases: the localized moments in
two FMS layers aline in ferromagnetic (F) configuration
(〈Sz1 〉av = 〈SzN 〉av = 7/2) and the moments aline in an-
tiferromagnetic (AF) configuration (〈Sz1 〉av = −〈SzN 〉av =
7/2). These results are shown for various values IS/W at
EF = −5. Here IS/W which is the exchange-interaction
strength, describes formally the strength of the scatter-
ing processes in the ferromagnetic barriers. This figure
shows that the effective spin polarization in FMS layers
oscillates by increasing the spacer thickness. The physical
origin of such oscillations is attributed to quantum inter-
ferences due to spin-dependent reflections of the electrons
at the FMS/M interfaces. The multiple interferences that
take place in the spacer, induce a change in the density of
states of each subband. Clearly, if the interferences in the
spacer are constructive, one has an increase of the density
of states; conversely, when the interferences are destruc-
tive, the density of states decreases. For the AF alignment,
where the magnetizations of the right and left FMS layers
are anti-parallel, electrons with up (down) spin are easy
(difficult) to tunnel into the spacer, and difficult (easy) to
tunnel out of it, because the densities of states of the left
and right FMS layers are different between up and down
spin subbands (the inset of Figs. 3 and 4). This imbalance
among the tunnel currents causes the spin accumulation,
when the spin-relaxation time is sufficiently long in the
spacer. By increasing the IS/W , the band of up (down)
spin is shifted to the low (high) energy side and the split-
ting between these subbands is increased [16]. In this case
the Psingle is increased and the multiple interferences in
the spacer and the difference between the Psingle and the
Pdouble is reduced. Thus, by fixing the EF for different val-
ues of IS/W , the amplitude of oscillations of the effective
spin polarization is decreased.
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Fig. 2. The effective spin polarization as a function of spacer
thickness d in the AF and F alignments for IS/W=0.1, 0.2,
0.3, and 0.4. The Fermi energy is EF = −5.0. Note the different
scale on the vertical axis.
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Fig. 3. The effective spin polarization inside the spacer in
the AF alignment, with IS/W = 0.1, N = 10, and increasing
values of EF. The inset is LDOS in FMS layers as a function
of energy.

0 1 2 3 4 5 6 7 8 9 10 11
-1.25

-1.00

-0.75

-0.50

-0.25

0.00

0.25

0.50

0.75

1.00

1.25

IS/W=0.2
 E

F
=-5.8

 E
F
=-5.9

 E
F
=-6.0

E
ff

ec
tiv

e 
S

pi
n 

P
ol

ar
iz

at
io

n

monolayers

-8 -6 -4 -2 0 2 4 6 8
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16
 spin-up
 spin-down

LD
O

S

E

Fig. 4. Same as in Figure 3, but for IS/W = 0.2.

The effective spin polarization inside the spacer is
shown in Figures 3 and 4 for the AF alignment. Here the
spacer is consisting of eight atomic layers. As the figures
show, by decreasing the Fermi energy, the effective spin
polarization in the spacer decreases. It confirms that be-
cause of the increase in spin splitting between up spin and
down spin subbands, the effect of multiple interferences in
the spacer and therefore the amplitude of oscillations are
reduced. Using these results, one can see that how long the
spin-polarized electrons remember their spin orientation.
This is especially important for electronic applications, be-
cause if the spins relax too rapidly, the distances traversed
by the spin-polarized current in a device will be too short
to serve any practical purpose.

4 Concluding remarks

To summarize, on the basis of the single-site CPA for the
s-f model at T = 0 K, we have investigated the spacer
thickness dependence of the tunneling spin polarization
in FMS/M/FMS double tunnel junctions. We have found
that the spin polarization in the FMS layers oscillates as a
function of their separation. These oscillations is shown to
decreases with increasing the IS/W . This approach will
be improved by taking electron-magnon scattering into
account, which plays essential roles at low temperatures.
The present formulation is applicable to problems of the
interlayer exchange coupling and the tunneling conduc-
tance in FMSs.
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